Calculating Velocity — de Coriolis’ Kinetic Energy Formula

发布日期:[15-11-22 20:03:36] 浏览人次:[]

      Last time we introduced Gaspard-Gustave de Coriolis’ formula to compute kinetic energy.  Today we’ll use it to determine the speed of descent, or velocity, of the coffee mug we’ve been watching closely in the last few blogs.  To calculate the mug’s velocity, we must bear in mind physicist Julius Robert von Mayer’s assertion that all forms of energy are interrelated, and in fact interchangeable, because energy can neither be created nor destroyed, it can only change forms.  For a refresher, see The Law of Conservation of Energy.

      Let’s now put a practical spin on this concept and apply it to our coffee mug’s free fall to the floor.  Once again, de Coriolis’ formula,

KE = ½ × m × v2                                               (1)

where m is the mass of our falling object and v its velocity.  The ½ is an unchanging, constant term that’s present due to the mathematical Rules of Integration governing integral calculus.  Calculus and its derivations are beyond the scope of this blog, but if you’re interested in pursuing this, follow this link to, The Physics Hypertextbook – Kinetic Energy.

      According to von Mayer’s Law, at the precise instant before the mug hits the floor its kinetic energy, KE, is equal to the potential energy, PE, it possessed when it rested passively on the shelf.  Stated another way, the instant before the mug makes contact with the floor, all its potential energy will have been converted into kinetic.

      The mug’s PE was calculated previously to be equal to 4.9 kg • meter2/second2.  See Computing Potential Energy for a review.  Knowing this, the mathematical relationship between the mug’s potential and kinetic energies is expressed as,

PE = KE = 4.9 kg • meter2/second2                         (2)

      By substituting this mathematical representation for KE into equation (1) we arrive at,

4.9 kg • meter2/second2 = ½ × m × v2                   (3)

We also know the mug’s mass, m, to be equal to 2.6 kilograms, so integrating that into the right side of equation (3) it becomes,

4.9 kg • meter2/second2 = ½ × ( 0.25kg) × v2         (4)

That leaves the mug’s velocity, v2, as the only remaining unknown term.  We’ll use algebra to isolate this variable by dividing both sides of equation (4) by ½ × ( 0.25kg).

(4.9 kg • meter2/second2) ÷ [½ × ( 0.25kg)] = v2

39.20 meter2/second2 v2

Finally, we’ll take the square root of the equation to place it in terms of v.

6.26 meters/second v

The mug’s velocity an instant before impact equates to 6.26 meters/second, or almost 21 feet per second.

mechanical engineering expert witness falling objects

      Next time we’ll discuss a metric unit used to measure energy known as the Joule and discover the man behind it. 马棚网
文章作者:Philip J.O'Keefe | 文章来源:Engineering-Expert-Witness-Blog | 责任编辑:intoner | 发送至邮箱: | 加入收藏:
本文关键字:Velocity  de Coriolis  Kinetic Energy  Formula  Energy

关于我们 | 站点导航 | 使用帮助 | 友情链接 | 广告服务 | 免责声明 | 新手上路
设为首页 | 加入收藏 | 在线留言 | 马棚网QQ群:{92562572}{102901272}{333259257} | 交流QQ: 客户服务 客户服务 客户服务