Willem Gravesande’s Experimentation on Kinetic Energy

发布日期:[15-11-22 20:01:24] 浏览人次:[]

      Last time we introduced The Law of Conservation of Energy, which holds that energy can neither be created nor destroyed.    We then applied the concept to a mug resting on a shelf, brimming with latent gravitational potential energy.    Today we’ll continue our discussion with a focus on kinetic energy and how Willem Gravesande’sexperimentation contributed to our understanding of the subject.

      The concept of kinetic energy was first posited by mathematicians Gottfried Leibniz and Johann Bernoulli in the early 18th Century when they theorized that the energy of a moving object is a factor of its mass and speed.    Their theory was later proven by Willem Gravesande, a Dutch lawyer, philosopher, and scientist.

      Gravesande conducted experiments in which he dropped identical brass balls into a soft clay block.  See Figure 1.

Gravesande's Experiment

Figure 1

      Figure 1 shows the results obtained when balls of the same mass m are dropped from various heights, resulting in different velocities as they fall and different clay penetrations.    The ball on the left falls at velocity v and penetrates to a depth d.    The center ball falls at twice the left ball’s velocity, or 2v, and penetrates four times as deep, or 4d.    The right ball falls at three times the left ball’s velocity, 3v, and it penetrates nine times deeper, 9d.    The results indicate an exponential increase in clay penetration, dependent on the balls’ speed of travel.

      In fact, all the kinetic energy that the balls exhibited during freefall was converted into mechanical energy from the instant they impacted the clay until their movement within it stopped.    This change in forms of energy from kinetic to mechanical demonstrates what Julius Robert von Mayer had in mind when he derived his Law of Conservation of Energy.   For a refresher on the subject, see last week’s blog, The Law of Conservation of Energy.

      As a result of his experimentation, Gravesande was able to conclude that the kinetic energy of all falling objects is a factor of their mass multiplied by their velocity squared, or× v2.

      We’ll see next time how Gravesande’s work paved the way for later scientists to devise the actual formula used to calculate kinetic energy and then we’ll apply it all to our coffee mug falling from the shelf.

www.mapeng.net 马棚网
www.mapeng.net
文章作者:Philip J.O'Keefe | 文章来源:Engineering-Expert-Witness-Blog | 责任编辑:intoner | 发送至邮箱: | 加入收藏:
本文所属专题:
相关资讯
热点资讯
推荐资讯

关于我们 | 站点导航 | 使用帮助 | 友情链接 | 广告服务 | 免责声明 | 新手上路
设为首页 | 加入收藏 | 在线留言 | 马棚网QQ群:{92562572}{102901272}{333259257} | 交流QQ: 客户服务 客户服务 客户服务